Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res Commun ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528300

RESUMO

Equine influenza (EI) is a highly contagious acute respiratory disease of equines caused by the H3N8 subtype of Influenza A virus i.e. equine influenza virus (EIV). Vaccination is an important and effective tool for the control of EI in equines. Most of the commercial influenza vaccines are produced in embryonated hen's eggs which has several inherent disadvantages. Hence, subunit vaccine based on recombinant haemagglutinin (HA) antigen, being the most important envelope glycoprotein has been extensively exploited for generating protective immune responses, against influenza A and B viruses. We hypothesized that novel vaccine formulation using baculovirus expressed recombinant HA1 (rHA1) protein coupled with bacteriophage will generate strong protective immune response against EIV. In the present study, the recombinant HA1 protein was produced in insect cells using recombinant baculovirus having cloned HA gene of EIV (Florida clade 2 sublineage) and the purified rHA1 was chemically coupled with bacteriophage using a crosslinker to produce rHA1-phage vaccine candidate. The protective efficacy of vaccine preparations of rHA1-phage conjugate and only rHA1 proteins were evaluated in mouse model through assessing serology, cytokine profiling, clinical signs, gross and histopathological changes, immunohistochemistry, and virus quantification. Immunization of vaccine preparations have stimulated moderate antibody response (ELISA titres-5760 ± 640 and 11,520 ± 1280 for rHA1 and rHA1-phage, respectively at 42 dpi) and elicited strong interferon (IFN)-γ expression levels after three immunizations of vaccine candidates. The immunized BALB/c mice were protected against challenge with wild EIV and resulted in reduced clinical signs and body weight loss, reduced pathological changes, decreased EIV antigen distribution, and restricted EIV replication in lungs and nasopharynx. In conclusion, the immune responses with moderate antibody titer and significantly higher cytokine responses generated by the rHA1-phage vaccine preparation without any adjuvant could be a novel vaccine candidate for quick vaccine preparation through further trials of vaccine in the natural host.

2.
NPJ Sci Food ; 8(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172179

RESUMO

Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.

3.
Acta Virol ; 67(1): 79-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950888

RESUMO

Equine herpesvirus 1 (EHV1) infection is a global health problem in equines and the virus is responsible for abortions, respiratory disease and myeloencephalitis in horses. Disease management requires proper biosecurity and immunoprophylactic measures. Vaccines strengthening both arms of immunity are essential for proper control and there has been a continuous focus in this area for generation of better vaccines. Here we report construction of bacterial artificial chromosome (BAC) clone of EHV-1 strain Tohana for mutagenesis of the virus and generation of gE gene deletion mutant EHV1. The BAC clone was generated by inserting the mini-F plasmid replacing ORF71 of EHV1 and transforming into E. coli for generation of EHV1-BAC. The infectious virus was regenerated from EHV-1 BAC DNA in RK13 cells. To check utility of EHV1-BAC, we have generated mutant EHV1 by deleting the virulence-associated gE gene. The mutant virus (vToHΔgE) showed significantly reduced plaque size without affecting replication efficiency. Pathological evaluation of lesions in BALB/c mice infected with vToHΔgE revealed reduction in clinical signs and pathology in comparison to the wild-type virus. Generation of infectious BAC of EHV1 and its usage in construction of attenuated viruses shows potential of the technology for development of indigenous modified live vaccine for EHV1. Keywords: quine herpesvirus 1; bacterial artificial chromosome (BAC); mutation; glycoprotein E; vaccine.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Gravidez , Feminino , Animais , Cavalos , Camundongos , Herpesvirus Equídeo 1/genética , Escherichia coli/genética , Modelos Animais de Doenças , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/genética , Doenças dos Cavalos/prevenção & controle , Deleção de Genes
4.
Viruses ; 15(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851640

RESUMO

Extensive and multiple drug resistance in P. aeruginosa combined with the formation of biofilms is responsible for its high persistence in nosocomial infections. A sequential method to devise a suitable phage cocktail with a broad host range and high lytic efficiency against a biofilm forming XDR P. aeruginosa strain is presented here. Out of a total thirteen phages isolated against P. aeruginosa, five were selected on the basis of their high lytic spectra assessed using spot assay and productivity by efficiency of plating assay. Phages, after selection, were tested individually and in combinations of two-, three-, four-, and five-phage cocktails using liquid infection model. Out of total 22 combinations tested, the cocktail comprising four phages viz. φPA170, φPA172, φPA177, and φPA180 significantly inhibited the bacterial growth in liquid infection model (p < 0.0001). The minimal inhibitory dose of each phage in a cocktail was effectively reduced to >10 times than the individual dose in the inhibition of XDR P. aeruginosa host. Field emission-scanning electron microscopy was used to visualize phage cocktail mediated eradication of 4-day-old multi-layers of XDR P. aeruginosa biofilms from urinary catheters and glass cover slips, and was confirmed by absence of any viable cells. Differential bacterial inhibition was observed with different phage combinations where multiple phages were found to enhance the cocktail's lytic range, but the addition of too many phages reduced the overall inhibition. This study elaborates an effective and sequential method for the preparation of a phage cocktail and evaluates its antimicrobial potential against biofilm forming XDR strains of P. aeruginosa.


Assuntos
Bacteriófagos , Infecção Hospitalar , Humanos , Pseudomonas aeruginosa , Biofilmes , Bioensaio
5.
Vaccine ; 41(5): 1081-1093, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36604218

RESUMO

Equid alphaherpesvirus 1 (EHV-1) infection causes significant health problems in equines. The EHV-1 infection leads to abortion storm in mares, respiratory disease and myeloencephalopathy. Despite the wide use of vaccines, the outbreaks of EHV-1 infections keep occurring globally, suggesting the need for the development of improved vaccines. Gene deletion attenuated mutant viruses could be a good candidate for the development of modified live vaccines. Here, we report the generation of mutant EHV-1 by deleting virulence (glycoprotein E & internal repeat 6; IR6) and immune evasive (pUL43 & pUL56) associated genes either individually or in combinations; and comprehensive evaluation of mutants through in vitro characterization followed by in vivo study in murine model to adjudge the attenuation of the virus and immune responses generated by mutants vis-à-vis wild type (wt) virus. The EHV-1 mutants with deletion of IR6 and gE genes (vToH-DMV) and four genes (i.e., gE, IR6, pUL43 and pUL56) (vToH-QMV) revealed a significant reduction in plaque size with minimal loss in replication efficiency in comparison to the wt virus. Further, in vivo studies showed virus attenuation adjudged through significant reduction in clinical signs, weight loss, gross and histopathological lesions in comparison to wt virus also revealed improved immune responses estimated through serum neutralization and flow cytometric analysis of CD4 + and CD8 + cell populations. Thus it can be concluded that EHV-1 mutants viz. vToH-DMV and vToH-QMV (novel combination) are promising vaccine candidates and qualify to be studied for adjudging the protective efficacy with wt virus challenge.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Gravidez , Cavalos , Animais , Feminino , Camundongos , Herpesvirus Equídeo 1/genética , Imunidade , Infecções por Herpesviridae/veterinária
6.
Front Microbiol ; 13: 993990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504807

RESUMO

In the present scenario, the challenge of emerging antimicrobial resistance is affecting human health globally. The increasing incidences of multidrug-resistant infections have become harder to treat, causing high morbidity, and mortality, and are posing extensive financial loss. Limited discovery of new antibiotic molecules has further complicated the situation and has forced researchers to think and explore alternatives to antibiotics. This has led to the resurgence of the bacteriophages as an effective alternative as they have a proven history in the Eastern world where lytic bacteriophages have been used since their first implementation over a century ago. To help researchers and clinicians towards strengthening bacteriophages as a more effective, safe, and economical therapeutic alternative, the present review provides an elaborate narrative about the important aspects of bacteriophages. It abridges the prerequisite essential requirements of phage therapy, the role of phage biobank, and the details of immune responses reported while using bacteriophages in the clinical trials/compassionate grounds by examining the up-to-date case reports and their effects on the human gut microbiome. This review also discusses the potential of bacteriophages as a biocontrol agent against food-borne diseases in the food industry and aquaculture, in addition to clinical therapy. It finishes with a discussion of the major challenges, as well as phage therapy and phage-mediated biocontrols future prospects.

7.
Can J Microbiol ; 68(12): 731-746, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174234

RESUMO

Emergence of multiple drug resistant (MDR) strains of Acinetobacter baumannii and a withering drug discovery pipeline necessitates the search for effective alternatives to replace or synergize with currently used antibiotics. In this report, we have described the synergy assessment of a virulent Acinetobacter baumannii phage φAB182 with a wide range of antibiotics. Myophage φAB182 was isolated from sewage against MDR A. baumannii and exhibited maximum stability at 25 °C and pH 7. It also had a short latent period of 9 min with a large burst size of 287. The phylogenetic analysis of its major capsid protein gene indicated an 84.15% similarity to the lytic A. baumannii phage Acj9. In the presence of antibiotics, phage φAB182 showed the highest synergy (p < 0.0001) with colistin, followed by polymixin B, ceftazidime and cefotaxime and this synergistic effect was further validated by time kill kinetics. The combined action of phage φAB182 with colistin, polymixin B, ceftazidime and cefotaxime was also synergistic for the eradication of biofilms formed by A. baumannii as measured by MBECcombination/MBECantibiotic values (<0.25). We thus propose bacteriophage φAB182 as a potential antibacterial candidate in combination therapy. The findings from this study strongly support the use of phage antibiotic synergy for the successful treatment of biofilm forming MDR A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Bacteriófagos/genética , Filogenia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Biofilmes , Cefotaxima/farmacologia , Cefotaxima/uso terapêutico , Farmacorresistência Bacteriana Múltipla
8.
Virus Res ; 321: 198909, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057417

RESUMO

Combination therapy of bacteriophages and antibiotics requires careful selection of specific antibiotics as it is crucial towards determining the success of phage therapy to treat multiple drug-resistant bacterial infections. So, we examined how different antibiotics can affect phage lytic activity when used in combination against targeted bacteria. Various antibiotics targeting bacterial protein synthesis pathways were tested for their bactericidal action in combination with bacteriophages of Acinetobacter baumannii (φAB145, φAB182), Staphylococcus aureus (φSA115, φSA116) and Salmonella Typhimurium (φST143, φST188). The phages displayed highly significant antagonism with most of the protein/ribosomal machinery targeting antibiotics: φSA115 (13/13); φSA116 (13/13); φST143 (11/13); φAB145 (11/13); φST188 (9/13); φAB182 (7/13). To validate this antagonistic effect, synergy assessment of these phages with gentamicin (GEN) and tetracycline (TE) was performed using time kill curve assays and counting the remaining viable bacterial cells at the end of the experiment. An increase in bacterial turbidity in phage-antibiotic combination groups was observed as compared to the treatment with phages individually. Also, GEN exhibited 4.22, 5.90, 2.02, 3.15, 2.68, and 2.60 log proliferation in viable cell count, respectively, for φSA115, φSA116, φST145, φAB182, φST143 and φAB188 in combination group in comparison to their individual actions. TE supplementation also led to 2.40, 4.90, 1.61, 2.73, 3.93, and 1.81 log increments in viable bacterial count when combined with φSA115, φSA116, φST145, φAB182, φST143 and φAB188, respectively. This study concludes that antibiotics targeting the bacterial protein biosynthetic machinery may lead to a reduction in the lytic activity of bacteriophages, thus lowering their therapeutic potential. Hence, such compounds must be carefully screened before their employment in combination treatment regimens.


Assuntos
Bacteriófagos , Antibacterianos/farmacologia , Bactérias , Proteínas de Bactérias , Bacteriófagos/genética , Gentamicinas , Tetraciclina
9.
Antibiotics (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671226

RESUMO

Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.

10.
PLoS One ; 16(8): e0255612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411120

RESUMO

Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.


Assuntos
Proteínas de Bactérias/genética , Genômica/métodos , Doenças das Aves Domésticas/diagnóstico , Salmonelose Animal/diagnóstico , Salmonella enterica/genética , Animais , Galinhas , Índia/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Sorogrupo
11.
Curr Microbiol ; 78(4): 1124-1134, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687511

RESUMO

Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand-receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host-pathogen interactions and assist novel strategies of drug discovery for coronaviruses.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Técnicas de Visualização da Superfície Celular/métodos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Humanos
12.
World J Stem Cells ; 12(7): 527-544, 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843912

RESUMO

Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.

13.
J Glob Antimicrob Resist ; 21: 34-41, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31604128

RESUMO

OBJECTIVES: Klebsiella pneumoniae is an important emerging pathogen of humans and animals leading to serious clinical consequences. Increased antibiotic use has promoted the emergence of carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing K. pneumoniae strains. Recently, phage therapy has gained momentum as a possible alternative against emerging antimicrobial resistance. This study was performed to assess the therapeutic effects of a novel lytic phage (VTCCBPA43) in a pneumonic mouse model in order to explore the efficacy of phage therapy against virulent K. pneumoniae infection. METHODS: The tailed phage VTCCBPA43 was assessed for its growth kinetics, in vitro host range, and temperature and pH sensitivity. Protein constituents were analysed by SDS-PAGE and nLC-MS/MS. Therapeutic efficacy was observed 2 h post-challenge with virulent K. pneumoniae in a BALB/c mouse model. RESULTS: Phage VTCCBPA43 was found to be highly temperature-tolerant (up to 80 °C). It was most active at pH 5, had a burst size of 172 PFU/mL and exhibited a narrow host range. It was identified as a KP36-like phage by shotgun proteomics. Following intranasal application of a single dose (2 × 109 PFU/mouse) post-challenge with virulent K. pneumoniae, the presence of biologically active phage in vivo and a significant reduction in the lung bacterial load at all time points was observed. A reduction in lesion severity suggested overall beneficial effects of VTCCBPA43 phage therapy in the pneumonic mouse model. CONCLUSION: This research represents the first in vivo evidence of effective phage therapy against K. pneumoniae infection by the intranasal route.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/patogenicidade , Terapia por Fagos/métodos , Administração Intranasal , Animais , Carga Bacteriana , Bacteriófagos/fisiologia , Modelos Animais de Doenças , Feminino , Temperatura Alta , Concentração de Íons de Hidrogênio , Infecções por Klebsiella/microbiologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
14.
Transbound Emerg Dis ; 67(3): 1062-1067, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31880100

RESUMO

Porcine circovirus type 3 (PCV3), a novel circovirus, has been reported recently from major swine growing countries globally, and the virus is associated with diseases like porcine dermatitis, nephropathy syndrome and reproductive failure. This report describes the identification of PCV3 associated with reproductive failure in sows and piglet mortality and circulation of the virus in healthy pigs in India. The pathological changes in various tissues from stillborn piglet and characterization of the virus genomes were reported. The genome sequences of Indian PCV3 strains showed 91.4%-99.8% nucleotide identity with other sequences of PCV3 strains circulating worldwide. The phylogenetic analysis showed clustering of Indian strains into a separate group with the isolate from USA (MN/2016) under PCV3a genotype. The results confirmed the circulation of PCV3 in Indian pigs and its association with clinical cases. This study speculates emergence of PCV3 as an important pig pathogen in the country, which warrants the thorough investigation on PCV3 epidemiology, pathogenesis and to implement the control measures.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Genoma Viral/genética , Reprodução , Doenças dos Suínos/virologia , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/mortalidade , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , Feminino , Genótipo , Índia/epidemiologia , Filogenia , Natimorto/veterinária , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/mortalidade
15.
J Vet Med Sci ; 81(12): 1753-1762, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31656240

RESUMO

Equine influenza is a leading cause for respiratory illness in equines. Major control measures involve vaccination which requires continuous harmonization owing to antigenic drift. The present study focused on assessing the protective efficacy of an inactivated recombinant equine influenza virus (rgEIV) vaccine candidate adjuvanted with MontanideTM Pet Gel in murine model. The rgEIV was generated using reverse genetics by incorporating HA and NA segments from EIV/H3N8, clade 2-Florida sublineage in an A/WSN/33 /H1N1 backbone and inactivated by formalin. The vaccine was prepared by mixing inactivated rgEIV with MontanideTM Pet Gel adjuvant followed by intranasal inoculation into BALB/c mice intranasally. The immune responses and protective efficacy of the vaccine was evaluated by measurement of antibody titer, immunoglobulin subtyping, cytokines, clinical signs and pathological lesions after immunization and challenge with wild EIV. Serology and cytokine expression pattern indicated that the vaccine activated mixed Th1- and Th2-like responses of vaccine. Booster immunization stimulated strong antibody responses (HAI titre: 192 ± 28.6) at 42 days post immunization and the predominant antibody subtype was IgG1. Upregulation of interferon (IFN)-gamma, interleukin (IL)-12 and IL-2 levels indicates effective induction of Th1 type response. We found that vaccination has protected mice against equine influenza virus challenge as adjudged through a lack of nonappearance of visible clinical signs of disease, no loss of body weight loss, reduced pathology in the lungs and markedly reduced virus shedding from the respiratory tract. Therefore, we conclude that recombinant EIV vaccine candidate adjuvanted with MontanideTM Pet Gel could aid in quick harmonization of the vaccines through replacement of HA and NA genes for control of EIV outbreaks.


Assuntos
Vírus da Influenza A Subtipo H3N8/imunologia , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos , Animais , Citocinas/genética , Feminino , Géis , Imunidade Humoral/imunologia , Imunização Secundária/veterinária , Isotipos de Imunoglobulinas/classificação , Pulmão/patologia , Manitol/análogos & derivados , Manitol/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Oleicos/imunologia , RNA Mensageiro/análise , Traqueia/patologia , Conchas Nasais/patologia , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia
16.
Res Vet Sci ; 123: 252-260, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30703616

RESUMO

Commonly, induced pluripotent stem (iPS) cells are generated by viral transduction of four core reprogramming genes, but recent evidences suggest that slightly different combination of transcription factors improve the efficiency and quality of generated iPS cells. However, vectors like retro- and lentiviral may cause insertional mutagenesis due to its integrating ability. Hence, alternate methods with safety concerns are needed to be investigated. Therefore, the present study was undertaken to reprogram buffalo fibroblasts using non-viral piggyBac (PB) transposon mediated transfer of six transcription factors. To generate buffalo iPS cells, fibroblasts were isolated from buffalo fetus at passage 2. The cells were co-electroporated with a PB transposon having CAGGS promoter driven cassette of Oct4, Sox2, Klf4, cMyc, Nanog, and Lin28 transcription factors separated by self-cleaving 2A peptide and a helper plasmid pCMV-PB transposase. After 12-14 days post electroporation, fibroblast cells morphology was observed to change to round structures which formed loose aggregates of cells on day 18. Putative iPS cell colonies were propagated in feeder free system and characterized through expression of pluripotency markers such as alkaline phosphatase, SSEA-1, SSEA-4, SSEA-5, TRA-1-81, Oct4, Nanog and Sox2 and endogenous genes supported the stemness property of the generated cells. These cells differentiated in vitro to form embryoid bodies and were found to express three germ layers markers. In conclusion, generation of buffalo iPS cells using transposon system provides insights into viral-free iPS technology which will facilitate genetic modification of the buffalo genome and help in the production of transgenic animals using genetically modified iPS cells.


Assuntos
Búfalos , Técnicas de Cultura de Células/veterinária , Feto/citologia , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Sequências Repetitivas Dispersas/fisiologia , Animais , Diferenciação Celular/genética
17.
J Equine Sci ; 29(1): 25-31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593446

RESUMO

Bordetella bronchiseptica is a well-known Gram-negative bacterial pathogen causing a plethora of diseases in different animals. Although its infection has been reported from pigs and dogs in India, no report of B. bronchiseptica from horses is described. We report for the first time, isolation, identification and characterization of strains of B. bronchiseptica from respiratory infection in horses from different states in India. The antimicrobial susceptibility testing showed resistance to penicillins, ceftazidime, and chloramphanicol. The virulence capability of the strains was confirmed by sequencing genes such as adenylate cyclase toxin (cyaA), bordetella virulence gene (bvgA) and by PCR detection of flagellin gene (fla). We demonstrate the involvement of B. bronchiseptica strains in respiratory tract infection in horses in India.

18.
Virus Genes ; 54(1): 160-164, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29116575

RESUMO

A virulent Aeromonas veronii biovar sobria and the corresponding novel, lytic bacteriophage (VTCCBPA5) were isolated from village pond water. The phage was found to belong to family Podoviridae. PCR analysis of major capsid protein gene confirmed its classification to T7-like genus. The protein profiling by SDS-PAGE indicated the major structural protein to be ~ 45 kDa. The phage (VTCCBPA5) is host specific and is stable over a range of pH (6-10) and temperatures (4-45 °C). On the basis of restriction endonuclease analysis combined with prediction mapping, it was observed to vary significantly from previously reported podophages of Aeromonas sp., viz. phiAS7 and Ahp1. The phylogenetic analysis on the basis of PCR-amplified segment of DNA polymerase gene of phage revealed it being an outgroup from podophages of Klebsiella sp. and Pseudomonas sp. though a small internal fragment (359 bp) showed the highest identity (77%) with Vibrio sp. phages. Thus, this is the first report of a novel Podoviridae phage against A. veronii. It expands the assemblage of podophages against Aeromonas sp. and BPA5 could be potentially useful in biocontrol of environmentally acquired Aeromonas veronii infections.


Assuntos
Aeromonas veronii/isolamento & purificação , Aeromonas veronii/virologia , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação , DNA Viral/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos da radiação , Peso Molecular , Filogenia , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase , Temperatura , Proteínas Virais/análise , Proteínas Virais/química , Proteínas Virais/genética , Microbiologia da Água
19.
Vet Microbiol ; 210: 188-196, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29103691

RESUMO

Equine influenza viruses (EIVs) are responsible for acute contagious respiratory infection in equines and the disease remains a major threat for equine population throughout the world despite vaccination strategies in place. The present study was aimed to assess the suitability of BALB/c mice as a potential small animal model for preliminary screening of EI vaccine candidates. For this, we evaluated the immunogenicity and protective efficacy of an inactivated EIV (H3N8) vaccine in BALB/c mouse model after challenge with homologous H3N8 virus (Clade 2 virus, Florida sublineage) through serology, clinical signs, gross and histopathology lesions with grading, immunohistochemistry and virus quantification. Serological responses in immunized mice were evaluated by haemagglutination inhibition assay (HAI) and antibodies were subtyped by ELISA. The vaccine induced optimum protective antibody titre on 49 dpi along with balanced Th1/Th2 responses. Immunized mice were well protected against EIV challenge as evident by significant rise in serum antibody titre which concurred with mild clinical signs, early recovery, lower gross and histopathological lesions score, less severe intensity of viral antigen distribution, restricted virus replication in respiratory tract and less virus detection in nasal washes for short duration. The duration of the viral load was also lower and only for brief period as compared to unvaccinated challenged mice. In conclusion, induction of H3N8 specific antibody response and protection against H3N8 challenge proves that egg grown inactivated H3N8 whole virus vaccine would provide an effective intercession against H3N8 virus. In addition, BALB/c mouse can serve as an attractive tool for adjudging protective efficacy of vaccine candidates prior to final testing in equines.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Cavalos/prevenção & controle , Vírus da Influenza A Subtipo H3N8/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/veterinária , Animais , Formação de Anticorpos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças dos Cavalos/virologia , Cavalos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Vacinas de Produtos Inativados/imunologia , Carga Viral
20.
BMC Genomics ; 18(1): 652, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28830350

RESUMO

BACKGROUND: Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS: The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS: Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.


Assuntos
Códon/genética , DNA Polimerase Dirigida por DNA/genética , Evolução Molecular , Vírus da Influenza A Subtipo H3N8/enzimologia , Vírus da Influenza A Subtipo H3N8/genética , Filogenia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...